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ABSTRACT   

 

Tummala, S. and Kosar, T., 2007. Data Management Challenges in Coastal Applications. Journal of Coastal 

Research, SI 50 (Proceedings of the 9th International Coastal Symposium), pg – pg. Gold Coast, Australia, ISBN  

The goal of this paper is to identify the data management challenges in coastal applications such as hurricane 

track prediction, storm surge modeling and coastal erosion modeling. The problems in managing the data due to 

different paradigms such as increase in data and computational requirements, conceptual changes in the 

computational models involved, and changes due to the evolution of objectives of the models are explained. 

Potential problems in a complete processing cycle that can be solved using automation are enumerated right from 

the selection of input data to the archival of output data or feeding the output data into a visualization system. 

Challenges to the user like having to complete the data management operations manually, to learn the underlying 

complexity of the resources, and to intervene during data placement failures are explained. Specialized tools for 

data placement and automation of specific tasks and the workflow mechanisms that are being used currently to 

automate the entire end-to-end cycle of scientific computation are mentioned as a solution to these problems. 

 

INTRODUCTION 
 

Coastal applications like hurricane track prediction, storm surge 

modeling, coastal erosion modeling are characterized by 

computation of large scale coastal data. These applications are 

already not only computationally intensive but are also becoming 

increasingly data intensive in nature. For example, The Earth Scan 

Laboratory of LSU (EARTH SCAN LAB, 2005) is collecting 

approximately 40 GB of data each day in the form of telemetry 

data for research purposes and emergency responses but is able to 

store only one fourth of it due to the storage limitations. With the 

objectives of the applications changing over a period of time, 

changes in the requirements and nature of the applications being 

used are making the data management challenges much evident. In 

this scenario, we would like to present the data management 

challenges that are increasingly becoming an issue for achieving 

the desired performance in these applications. These challenges 

may be due to some paradigms like increase in the data and 

computational requirements (increasing grid resolution, data 

resources, and number of runs), conceptual changes in the 

computational models involved, and changes due to the evolution 

of objectives of the models.  

PARADIGMS FOR DATA MANAGEMENT 

CHALLENGES 
 

The increasing data management issues and the resulting 

overhead of manual work to the end user (i.e., coastal scientist) 

can be due to the one or more of the following paradigms. In each 

of these paradigms, the causes leading to the data management 

challenges are explained. 

 

Increasing Data and Computational Requirements 
 

Increases in the data and computational requirements can be 

attributed to the factors such as increase in the grid resolution of 

the study area, increase in the number of data sources to be taken 

into account for forecasting, and increase in the number of runs of 

the model per forecast. These are illustrated as follows: 

 
Increasing Grid Resolution: Grid resolution represents the 

distance between two points where the future atmospheric 

parameters are forecasted. For each forecast, the model needs to 

compute the projected parameters at each point in the grid. Hence 

the grid resolution decides the number of points where the 

computation of forecast is performed by the system. If the forecast 

is done on a coarser grid, the number of points on the grid will be 

low, implying that the computation points for the system to 

calculate will be lower. If the resolution of the grid is finer, then 

the system will have to compute the weather parameters at larger 

number of points. Hence the data requirements of the system will 

increase and this may cause problems in the placement and 

management of such large amounts of data. In 2002, the MEAD 

system generated 600GB of data per storm of from 100 forecasts 

per each storm by using a resolution of 20km. At present, it is 

estimated that the hurricane ensemble predictions will be using a 

grid resolution of 1- 2 km resulting in several tens of Terabytes of 

data (RAMAMURTHY, 2002). 

 
Increasing Number of Data Sources: The data for climate 

forecasting applications is collected from different sources like 

satellite imagery, sensor networks, and LIDAR data from radar 

appliances. All these constitute into High resolution bathymetric, 

topographic, and airborne gravimetric data (NOS, 2005). In the 

coastal climate forecasting applications, the models are run while 



www.manaraa.com

 

 

Journal of Coastal Research, Special Issue 50, 2007 

 

Data Management Challenges in Coastal Applications 

their scope is being limited to a fixed geographical boundary 

location. In the due course of time, if the scope of the geographical 

area under the coverage of the model is increased, then the 

numbers of data sources that are needed to be taken into account 

also increase. This will lead to the system having to place and 

manage larger number of input data. This aspect also causes an 

overload to the data assimilation components of the weather 

forecasting models as there is an increase in the numbers of data 

items and sources to be assimilated. Steven Smith, the director of 

AccuWeather, states this problem as "So not only are you talking 

in the broad sense of distributed computing, where modelers are 

trying to improve forecasts using the capabilities of distributed 

computing, we are also trying to figure out how do we handle not 

megabytes or gigabytes of data, but terabytes of data. And when 

you are going to 24 different sources, which have potentially 

completely different operating procedures, this creates a headache 

(GOTH, 2005)."  

 
Increasing Number of Runs of the Model: In weather 

forecasting models, a number of runs are made for every forecast 

so that the most accurate prediction is made. If the numbers of 

runs of the model are high, then the data placement and 

management requirements of a system will increase causing a 

threat to the performance of the system as the system has to 

maintain and consider larger amounts of data throughout its 

forecasting cycle before it makes a final forecast. For example, 

The National Hurricane Center (NHC) in Miami, Florida issues 72 

hr tropical cyclone track and intensity forecasts four times per day 

for all storms in the north Atlantic and eastern north Pacific east of 

140°W. The Central Pacific Hurricane Center (CPHC) in 

Honolulu, Hawaii issues similar forecasts for tropical cyclones in 

the north Pacific from 140°W to 180°W. WAVEWATCH III 

(TOLMAN, 1997) is a third generation model used for the 

simulation of the near shore waves. In the WAVEWATCH III 

simulation, for each track from the NHC, a separate run may be 

performed (SURA, 2005). Computing the models for each such 

track and analyzing the results of all the tracks for comparison and 

correlation will be required to produce the final forecasting. 

Conceptual Changes in the Computational Models 

Involved 
 

The intricate complexities of the model that is being implemented 

may cause problems to the data placement and management. 

Sometimes, changes in the conceptual details of the model will 

result in extra data placement and management overhead for the 

system. These changes in the conceptual details may be the 

changes in the existing model such that more data is computed, 

assimilated, staged and transferred at a time. This will lead to 

more amounts of the data that is to be handled and placed by the 

system during the forecasting process. For example in the 

ENSEMBLE method for MEPS system of forecasting the 

hurricane track, a set of multiple predictions are utilized at the 

same time. These multiple predictions are generated from 

reasonably different initial conditions and/or with various credible 

versions of models. In the year 2001, the total number of storms 

was more than 40. The MEPS system made over 100 forecasts for 

each hurricane case from which the resulting data volume was 600 

gigabytes per storm from grid spacing of 20 km (RAMAMURTHY, 

2002). 

 

Evolution of Objectives of the Models 
 

The coastal and weather forecasting applications till now have 

been applied to a specific purpose such as hurricane track 

prediction, storm surge modeling, and coastal erosion. But in the 

recent times, the need for overall climate modeling has been 

identified (NSF, 2002). To satisfy this need, various countries and 

government agencies are joining hands in building global 

observation systems of earth. One such initiative is Global Earth 

Observation System of Systems (GEOSS) (GEOSS, 2003). This 

long term project strives to provide observation facilities for the 

entire earth climate in all the dimensions possible. Another such 

application is NASA's Earth System Enterprise Plan (NASA ESS, 

2003). The reason for mentioning these two projects is to convey 

the grandeur of the applications that come into reality in these 

projects. The applications that underlie in the implementation of 

the project need to handle several terabytes and even petabytes of 

data each time an activity is forecasted. This clearly explains the 

anticipated need for better data placement in the event of such 

applications. 

PROBLEMS DURING AN END-TO-END 

PROCESSING CYCLE 
 

Considering a single end-to-end processing cycle in an application 

run by the user, the data management issues that are arising due to 

the above paradigms are explained as follows: 

Data Pre-processing 

 
Data Collection: It can be either by selection of input data or 

from assimilation of a real time recorded data or by regeneration 

of input data from some other processing cycle. Data specific to 

particular time and geographical and climatic conditions are used 

for performing simulations in coastal applications. With the 

amount of data collected as inputs increasing, there is a need for 

meaningful selection of data from the ever growing archives.  

 

The selection of input data from large amount of existing data 

sources can be aided by the use of metadata catalogs. Metadata 

that provides meaningful information about the semantics of the 

data can help the user in making the selection of only a required 

set of data. This is being facilitated by providing a querying 

mechanism to the metadata catalog. One such solution proposed 

by SCOOP (UAH IT, 2006) is using a metadata catalogue. MDS 

(KESSELMAN et al., 2001) and SRB (BARU et al., 1998) are two 

technologies being used to provide a centralized information 

service to find out the data which may be widely distributed over 

heterogeneous storage resources. 

  

The selected input data may be available centralized at one 

location or decentralized at different locations. In fetching all the 

data from different locations, the timely performance of the 

system is affected. For example, in the WAVEWATCH III 

modeling of hurricane track, the input data of GFS winds and Sea 

Surface Temperatures (SST) (REYNOLDS, 1988) may be collected 

from different sources to be fed into the system. In this aspect 

better data placement and assimilation systems are needed to 

avoid the inefficiency. 

 

When the entire data may be available at centralized locations, 

the transport mechanism used to fetch the data may pose the 

problems. Some problems may be due to the performance of the 
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data source. If the number of users of the data is more, then the 

availability of data will be affected. Failures in data transfer must 

be rectified immediately such that there is maximum fault 

tolerance in the system. For achieving the fault tolerance by 

resuming the data transfers after failure, logging of the data 

transfer activity into a persistent storage (DEELMAN et al., 2006) is 

considered to be effective. 

 

Input data is usually fed into the system in the form of files for 

processing. For better forecasting results, in the hurricane track 

prediction, real time data is assimilated into suitable format 

(BOGDEN et al., 2005). This real time data is the data pertaining to 

different parameters at the different locations. With the advent of 

distributed sensor networks, there will be high increase in the 

number of data sources to be assimilated. Also the nature of the 

data sources will be dynamic which means that the system must be 

able to deal with on and off stream real time data from such sensor 

networks. The storage and management of such transient or 

dynamic stream of data must be incorporated for facing this 

problem. DDDAS is one such effort where real time wireless 

sensors from both water and wind are used to feed data into 

coastal modeling applications in real time (NSF DDDAS, 2006). 

 

Data Transformation: Coastal modeling applications involve 

transforming the collected input data into a form that is optimized 

to be input for processing. This would bring in additional 

processing tasks which may involve converting from one data 

format into another, extracting the needed data from collected raw 

data files, and rearranging the data to optimize the data access 

(MICHALAKES et al., 2004). When dealing with the preprocessing 

of large data sets, large amounts of processing, storage and 

caching resources are consumed very easily which might lead to 

the inefficient use of resources with time. 

Staging-in the Input Data 
 

In coastal modeling applications, the data may be preprocessed at 

the computation site or at a different site prior to performing the 

actual processing. If the pre processing is done at a different site 

than the actual computation site, the required input data has to be 

staged-in to the computation site prior to actual processing. This 

will bring in the issues of the data transfer discussed earlier. If the 

pre processing is done at the same site as actual computation, the 

issues of cleaning up of the remaining intermediate and persistent 

data that may not be needed for computation will also arise. As 

mentioned earlier, due to diverse and geographically distributed 

nature of the resources, the data may not only have to be collected 

from diverse sources but also have to be deployed on diverse 

computation centers which would add to the complexity and 

manual work to be dealt by the user. For example, in 

WAVEWATCH III simulation (TOLMAN, 1997), in the absence of 

a portal that enables automatic fetching of the data and 

initialization of the model, it becomes the task of the user to 

ensure that the staging is done effectively. 

Actual Data Processing 

 
Due to the computational intensiveness of the coastal applications, 

during computation, many processes of the application may 

simultaneously perform reads or writes on one or more of the local 

disk resources. During high performance computation of coastal 

data like in hurricane simulation, large amounts of data will be 

read from and written into the disk resources at the computation 

site. In such a scenario I/O could easily become a bottleneck 

hindering the overall turnaround time. This problem demands 

attention particularly in the case of real time simulations, where 

high performance is desired to obtain the results in least possible 

time. High performance parallel I/O mechanisms working 

synchronously both from the application side and from the 

underlying resource's side can prevent I/O from becoming a 

bottleneck. In the WRF model simulation, the use of a parallel I/O 

over a sequential NetCDF has improved the overall wall clock 

time between the application and the data (MICHALAKES et al., 

2004). 

 

The produced output data may be required to be modified for 

further processing, visualization or for backup and archival. Hence 

processing upon the output data will again bring in the 

computation tasks and the data management challenges associated 

with it like in the pre processing stage of the data. 
 

Staging-out the Output Data 
 

Staging-out of the data from the computation site may be done to 

archive the output data or to feed it as input into an analysis or 

visualization system. This will involve the movement of data from 

the computation site to the archive or visualization site. In case of 

staging the output data into a visualization system, storage 

allocation, caching and data placement related issues will arise. In 

case of archiving the data, the system not only has to take care of 

the three issues, but also has to register the data with the archive's 

metadata catalog to maintain the output data's provenance. 

 

With the large amounts of the output data being generated at a 

high speed from applications like hurricane track prediction, 

archiving the data can become a tedious task. Though storage 

allocation may not become a problem in this case, the slow disk 

speeds can create I/O bottle neck in archiving the data and thus 

can block the resources during archival process for a long time. 

The use of non archival storage resources to cache the data during 

large data transfers can consume the resources easily. 

 

Visualizing the Data 

 
The requirements for visualizing the data may include the need to 

visualize and comprehend increased amount of output data than 

before, real time visualization of model results on the fly, multiple 

sets of output data for comparison and correlation, data of a multi 

dimensional nature and the need for interactive visualization. 

Some times during the interactive visualization of data, even the 

model processing of input data is done to produce data required 

for representing the output data. 

 

In case of increased amounts of output data, the underlying 

visualization infrastructure should be able to deal with the storage 

and caching needs from the size of the large data sets, processing 

and display requirements. If the data to be visualized is at a remote 

site, then network performance and latency issues also will have to 

be taken care of. In case of real time visualization of model results 

on the fly, the underlying system has to be tuned for the 

automation of data processing, resource optimization and data 

integration issues so that the entire processing cycle is done in a 

coordinated manner to optimize the total turnaround time. During 

comparison of different output data sets during visualization, 

additional data processing overhead will be placed when the 

system is used to compare data sets in different formats and those 

which need conversion before visualization. 
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THETIS (NIKOLAOU et al., 1997) is one such system which tries 

to address the requirements of scientists, engineers and decision-

makers to access, process and subsequently visualize data 

collected and stored in different formats and held at different 

locations. The need exists for tools that enable the integration of 

the data, together with their associated data models, data 

interpretation techniques, and visualization requirements. The 

objective is to build an advanced integrated interoperable system 

for transparent access and visualization of such data repositories, 

via the Internet and the World Wide Web. 

CHALLENGES TO THE USER 
 

With above data management issues, the end user of the 

application has to complete the end-to-end processing cycle. In 

this process, he is faced with many technical challenges which are 

explained as follows: 

Underlying Complexity of the Resources 
 

With the heterogeneous, distributed and geographically distant 

nature of the resources, the user has to keep track of the 

specifications of the tasks involving each of the distinct resources. 

In this process, he is forced to learn and apply knowledge of the 

underlying hardware and software resources at each site. The 

heterogeneous nature of the involved computation, storage and 

network resources will push the end user scientist to learn the 

different computational procedures, file structures and directory 

mechanisms, data placement and movement procedures. If the 

computation and storage resources support heterogeneous 

transport mechanisms of data, the user has to learn and apply 

different data placement techniques specific to each different 

mechanism required in the entire set of data placement tasks to be 

performed. 

 

In this scenario, a higher level abstraction which would mask 

the underlying heterogeneous nature and complexity details of the 

resources from the user is desired. This will enable the coastal 

scientist in having to specify just the higher level task 

specifications and need not having to worry about the underlying 

mechanism so as to be able to concentrate more on the data 

analysis and visualization. 

 

Manual data management 
 

With the increased amount of coastal data sources, the user is 

required to gather the inputs from different sources. The user has 

to query one or more metadata catalogs to get the list of available 

storage resources holding the required data. As mentioned earlier, 

the availability of the input data affects the timely performance of 

the end-to-end processing cycle. Replication mechanisms can be 

used to place the data set in multiple locations based on 

projections and forecasts of the demand for the required data. If a 

robust replication mechanism is not available, the user would have 

to spend time on moving the data from a distant location which 

can take longer than expected. 

 

Once the required data is located and selected, the user would 

have to use the supported transfer mechanism by the source 

location to move the data. During the movement of data from 

source to computation sites, the users may have to get the required 

storage allocation done in order to ensure that the size of the input 

data is being supported by the destination.  

 

The user would want to extract only subset of data from the 

collected input data, reformat and rearrange the data to provide 

optimized access to the application. This would involve him to run 

pre-processing programs upon the input data. This processing 

upon the input data sets would block the resources for a long time 

if the input data set is large. Scripts, programs and other 

processing mechanisms would have to be employed by the user 

upon the input data during this pre-processing. 

 

The user has to consider the storage, caching, network and 

computational complexities involved to make a selection of set of 

resources to complete the processing cycle. This selection would 

involve either moving the input data to the application or vice 

versa or even moving both application and data to a new site for 

processing. In all these cases, the user has to do the staging 

manually unless he employs special programs to do so. 

 

During the actual processing of the data, the efficient allocation 

of processing mechanism with the availability of large amounts 

data upon the limited amount of computational, storage and 

network resources chosen will affect the timely completion and 

overall performance of the application. The specification of the 

process scheduling mechanism upon the chosen resources is 

another task in this regard to be taken care of manually by the 

user. 

 

The user will be needed to perform processing of the output 

data for the required reformatting or rearrangement of the output 

data to make it suitable for the analysis or visualization. In this 

stage, the user will need to take care of staging-out the data either 

manually. In case of archiving the data, the user would be needed 

to gain the access, authorization, and allocation of the destination 

storage. The user will also have to maintain track of the archived 

data by registering it with metadata catalogs or by naming the data 

appropriately for later reference. 

 

Manual intervention during failures 
 

Due to heterogeneous and distributed nature of the resources that 

may be involved in the end-to-end processing cycle, a broad range 

of constraints and complexities come into picture which have to be 

taken care of by the user. This additional work may also be due to 

the absence of inherent workflow mechanism to co-ordinate all the 

heterogeneous resources for maximum efficiency. This 

mechanism also has to rectify any resource or process failure 

during the end-to-end cycle so that the user does not have to 

intervene during the data management failures. 

 

Due to the underlying hardware and software fabrics involved, 

data placements in heterogeneous environments may not always 

be perfect. Network failures, packet loss during data transfer, long 

time hanging of transfers and data corruption may occur during 

the movement of data from one point to another. With the 

dynamic nature of the resources, the data placement system used 

for moving data has to adapt to the changing environment to 

optimize the data placement process. In the absence of data 

placement schedulers like STORK (KOSAR, 2004) or reliable data 

movement tools like RFT (ALLCOCK et al., 2004), the user has to 

retry the failures that occur. Network failures, storage source or 

destination crashes may not easily be detectable for the user to 

take timely rectifying actions. In such cases, the data placement 
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system has to identify failures in a timely manner and has to take 

the required steps without bothering the user. 

 

DISCUSSION 

 
According to the ‘Strategic Plan for the US Climate Change 

Science Program (CCSP)’, one of the main objectives of the future 

research programs should be “Enhancing the data management 

infrastructure”, since “The users should be able to focus their 

attention on the information content of the data, rather than how 

to discover, access, and use it.” [CCSP 2003]. This statement by 

CCSP summarizes the goal of many cyberinfrastructure efforts 

initiated by DOE, NSF and other federal agencies. 

 
There have been several efforts in achieving this goal using 

state-of-the art techniques. Kosar et al introduced the concept that 

the data placement efforts which have been done either manually 

or by using simple scripts should be regarded as first class citizens 

and these tasks should be automated and standardized just like the 

systems that support and administer computational jobs. Data 

intensive jobs need to be queued, scheduled, monitored and 

managed in a fault tolerant and efficient manner. They have 

designed, and implemented the first prototype batch scheduler 

specialized in data placement: Stork [KOSAR 2004, KOSAR 2005]. 

Stork provides a level of abstraction between the user applications 

and the underlying data transfer protocols; allows queuing, 

scheduling, and optimization of data placement jobs.  

 

NSF has recently funded development of a related project, 

PetaShare: an innovative distributed data archival, analysis and 

visualization instrument for data intensive collaborative research. 

[PETASHARE, 2007] PetaShare will enable transparent handling of 

underlying data sharing, archival, and retrieval mechanisms; and 

will make data available to the scientists for analysis and 

visualization on demand. An initial prototype of PetaShare will be 

deployed at five Louisiana campuses. PetaShare will leverage the 

existing 40 Gigabit per second Louisiana Optical Network 

Initiative (LONI) infrastructure to make the interconnections, fully 

exploiting high bandwidth low latency optical network 

technologies.  

 

 Other related efforts include work on end-to-end workflow 

management. The collected data need to be moved from the 

source sites to the computation sites for processing as required, 

and the results then sent to the interested parties for further 

analysis and visualization or to the storage sites for long term 

archival. This end-to-end process needs to be well managed and 

coordinated. Only with a thorough orchestration of job and data 

workflows, an end-to-end system with least human intervention 

can be developed.  

 

During the design of the end-to-end job and data workflows, 

several criteria need to be taken into consideration; such as 

workflow mapping criteria and timing, workflow delegation 

criteria and decision points, the decision of resource assignments, 

pre- and post-staging criteria, and workflow extension and 

reduction criteria. The workflow planning software needs to 

construct a high-level plan for the entire workflow ahead of time 

and provide the workflow execution software with a general 

structure of the workflow.  
 

A workflow management system can coordinate the entire end-

to-end process to ensure the reliable and timely completion of the 

entire workflow. By managing the task dependencies and by 

interacting with the underlying scheduling and execution 

components the entire sequence of the end-to-end processing cycle 

can be maintained by the workflow manager and scheduled 

automatically retrieving from failures if any occurring in between. 

 

One such tool is Pegasus (DEELMAN et al., 2006) workflow 

planning system developed by ISI at USC. Pegasus consults 

various Grid information services to find the resources, software, 

and data that are used in the workflow. A Replica Location 

Service (RLS) (CHERVENAK et al., 2005) and Transformation 

Catalog (TC) (WILDE et al., 2004) are used to locate the replicas of 

the required data, and to find the location of the logical application 

components respectively. Pegasus also queries Globus Monitoring 

and Discovery Service (MDS) (KESSELMAN et al., 2001) to find 

available resources and their characteristics. The workflow 

execution of Pegasus is based on static planning and its executable 

workflow is transformed into Condor jobs for execution 

management by Condor DAGMan (COUVARES et al., 2006).  

 

In order to ensure the reliable completion of the computational 

procedures, practice of using PBS, Condor, and LSF is already in 

use. Likewise, specialized data discovery systems like MDS, SRB 

MCAT (BARU et al., 1998), and Metadata catalog service (SINGH 

et al., 2003) can be used to gain centralized access to widely 

distributed data. Globus RLS, ADA, GFRM are some of the 

replication mechanisms developed to ensure the timely availability 

of the data in high demand. Scientific data archives and their data 

access brokering technologies like SRB, EOSDIS (CARLONE, 

1992) can be used for the archival of the data for retention and 

permanent access.  

CONCLUSION 
 

The increase of data and computational requirements of the 

application are bringing in the issues of data management in 

coastal applications. Such issues are forcing additional 

computational and data management work upon the coastal 

scientist which is amounting to more than the actual science of his 

domain. Through this paper we have discussed the various causes 

for the data management challenges. The issues that are 

culminating from the arising data management challenges are 

explained. The additional work being imposed upon the user in a 

way to deal with these data management issues are explained. We 

have explained as how the user could make use of the specialized 

tools for automation, failure recovery and data management. To 

hide the underlying complexity of the end-to-end processing 

workflow, the user can make use of the workflow managers so 

that he can concentrate more on his science than having to take 

care of the data management challenges. 
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